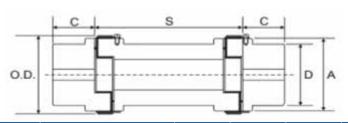
Jaw Couplings



The Finer Jaw Coupling is recognised across a large range of industries. The Jaw Coupling is highly resilient, it does not require any lubrication and can work in environments contaminated with oil, dirt, sand, moisture and grease. The rubber insert is designed to absorb shock loading and does not allow for any metal on metal contact. Finer Power Transmissions stocks both the Spider Elements (rubber & poly-urethane) as well as the Wrap Element Kits. Finer Power Transmissions stocks a range of jaw couplings in a variety of pre-bored and keyed sizes.

#****

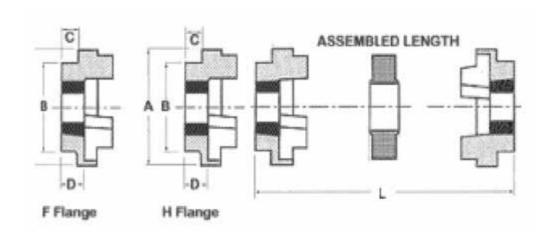
	L050	L070	L075	L095	L100	L110	L150	L190	L225	L276
Spider	$\sqrt{}$	√	√	√	√	√	√	√	√	√
Wrap				√	√	√	√	√	√	
Kit				√	√	√	√	√	√	
Pilot Bore Hub	√	√	√	√	√	√	√	√	√	√
Hytrel Spider	$\sqrt{}$	√	√	√	√	√	√	√		
PU Spider	√	√	√	√	√	√	√	√		
		ı		ı	Imperial (i	nch)				
3/8	√	√								
7/16				√						
1/2	√	√	√	√	√					
9/16				√						
5/8	√	√	√	√	√					
3/4		√	√	√	√	√				
7/8			√	√	√	√				
1			√	√	√	√	√			
1-1/8				√	√	√	√			
1-1/4					√	√	√	√		
1-3/8						√	√	√		
1-1/2						√	√	√		
1-5/8								√		
2								√		
					Metric (m	nm)				
9	V									
10	V	V								
11	$\sqrt{}$	V								
12	V	V	V							
14	$\sqrt{}$	V	V	V						
15			V							
16		V	V	V						
18		V	V	V	V					
19		V	V	V	V					
20			V	V	V	√				
22			V	V	V	V				
24				V	V	V	V			
25				V	V	V	V	V		
28				V	V	V	V	V		
30					V	V	V	√		
32					V	V	V	√		
35					V	V	V	√		
38					V	√	V	√		
40						V	V	√		
42						√	√	V	√	
45							V	√		
48							V	√		
50								√		
55								√	√	
60								√	√	



5 "	Courties Tour A D C D			6	Weigl	Max Bore				
Coupling	Туре	А	В	С	ט	D Stock Bore		Max. Bore	(mm)	
L050PB	1	27.4	43.4	12.2	15.7	6	-	-	15	
L070PB	1	35	53	13	19	6	0.26	0.24	19	
L075PB	1	44.5	53	13	21	6	0.45	0.39	22	
L095PB	1	54	65	13	25	11	0.79	0.69	29	
L100PB	1	65	86	19	35	11	1.55	1.32	35	
L110PB	1	84	110	24	43	16	2.93	2.55	42	
L150PB	1	96	113	25	45	16	4.06	3.51	48	
L190PB	1	115	133	25	50	18	-	-	55	
L225PB	1	127	155	25	55	18	-	-	65	

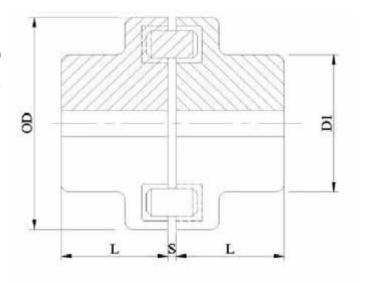
Power Ratings (KW)

- "			Speed RPM								
Coupling	oling Max. RPM	Torque (Nm).	100	720	960	1440	2880	3600			
L050PB	18000	3.51	0.037	0.26	0.35	0.53	1.73	2.17			
L070PB	14000	5.77	0.06	0.43	0.58	0.87	3.61	4.51			
L075PB	11000	11.9	0.12	0.9	1.2	1.8	5.78	7.22			
L095PB	9000	25.8	0.27	1.95	2.59	3.89	16.73	20.91			
L100PB	7000	55.4	0.58	4.18	5.58	8.36	31.77	39.71			
L110PB	5000	105	1.10	7.94	10.59	15.88	44.93	56.16			
L150PB	4000	150	1.56	11.23	14.98	22.46	60.28	75.35			
L190PB	3600	200	2.09	15.07	20.09	30.14	84.4	105.5			
L225PB	3600	280	2.93	21.09	28.13	42.2	84.4	105.5			


Jaw Coupling Spacer

Dayt No.	Bore (mm)			_		0.0	C	
Part No.	Min	Max	A	Ĺ	D	OD	Spacer Length (mm)	
L100-100MM/140MM	10	35	65	35	57	78	100/140	
L110-100MM/140MM	15	42	85	43	76	96	100/140	
L150-100MM/140MM/180MM	15	48	96	45	80	111	100/140/180	
L190-100MM/140MM/180MM	20	60	115	54	102	130	100/140/180	
L225-100MM/140MM/180MM	20	65	127	64	111	142	100/140/180	

Jaw Couplings - Taper Lock



c .			Dimensions	5.4	Max Bore			
Size	А	В		D	L	Bush	mm	inch
L100	65	65	-	22.5	64	1108	28	1-1/8
L110	85	85	-	25.5	74	1210	32	1-1/4
L150	96	96	-	25.5	77	1210	32	1-1/4
L190	115	102	6.5	25.5	77	1610	42	1-11/16
L225	127	108	13	32	90	2012	50	2

Flexible NM Series Jaw Couplings

The NM coupling has a very distinctive element that weaves in and out between the jaws. This ring has a high internal damping characteristic, which enables the coupling, on reaching a dangerous speed range, to limit the torsional oscillation and thus protect the linked machines from damage. Elements come in material grade Perbunan (Pb72) with nitrile rubber (NBR) and hardness of 72 & 82 shore A with temperature range of $-40~\rm C^{\circ}$ to $+120~\rm C^{\circ}$.

5:	Bore	(mm)	00 01			_	Max Speed	Torque (NM)		Power Rating	Weight (kg)
Size	Min	Max	OD	D1	D1 L		(RPM)	Nominal	Max	kW / rpm	/ set
NM-50	7	19	50	33	25	2.0±0.5	13500	12.74	22.54	1.33	0.52
NM-67	9	28	67	46	30	2.5±0.5	10000	21.56	39.2	2.26	0.93
NM-82	10	32	82	53	40	3.0±0.5	8000	49	88.2	5.13	1.78
NM-97	12	42	97	69	50	3.0±0.5	7000	102.9	186.2	10.78	3.46
NM-112	14	48	112	79	60	3.5±0.5	6000	163.66	294	17.14	5
NM-128	18	55	128	90	70	3.5±0.5	5000	261.66	470	27.40	7.9

Stocking elements to suit.

